\(\int \frac {1}{\sqrt {3+3 \sin (e+f x)} (c+d \sin (e+f x))^2} \, dx\) [548]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 27, antiderivative size = 169 \[ \int \frac {1}{\sqrt {3+3 \sin (e+f x)} (c+d \sin (e+f x))^2} \, dx=-\frac {\sqrt {\frac {2}{3}} \text {arctanh}\left (\frac {\sqrt {\frac {3}{2}} \cos (e+f x)}{\sqrt {3+3 \sin (e+f x)}}\right )}{(c-d)^2 f}+\frac {\sqrt {d} (3 c+d) \text {arctanh}\left (\frac {\sqrt {3} \sqrt {d} \cos (e+f x)}{\sqrt {c+d} \sqrt {3+3 \sin (e+f x)}}\right )}{\sqrt {3} (c-d)^2 (c+d)^{3/2} f}+\frac {d \cos (e+f x)}{\left (c^2-d^2\right ) f \sqrt {3+3 \sin (e+f x)} (c+d \sin (e+f x))} \]

[Out]

-arctanh(1/2*cos(f*x+e)*a^(1/2)*2^(1/2)/(a+a*sin(f*x+e))^(1/2))*2^(1/2)/(c-d)^2/f/a^(1/2)+(3*c+d)*arctanh(cos(
f*x+e)*a^(1/2)*d^(1/2)/(c+d)^(1/2)/(a+a*sin(f*x+e))^(1/2))*d^(1/2)/(c-d)^2/(c+d)^(3/2)/f/a^(1/2)+d*cos(f*x+e)/
(c^2-d^2)/f/(c+d*sin(f*x+e))/(a+a*sin(f*x+e))^(1/2)

Rubi [A] (verified)

Time = 0.32 (sec) , antiderivative size = 175, normalized size of antiderivative = 1.04, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {2858, 3064, 2728, 212, 2852, 214} \[ \int \frac {1}{\sqrt {3+3 \sin (e+f x)} (c+d \sin (e+f x))^2} \, dx=-\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {2} \sqrt {a \sin (e+f x)+a}}\right )}{\sqrt {a} f (c-d)^2}+\frac {\sqrt {d} (3 c+d) \text {arctanh}\left (\frac {\sqrt {a} \sqrt {d} \cos (e+f x)}{\sqrt {c+d} \sqrt {a \sin (e+f x)+a}}\right )}{\sqrt {a} f (c-d)^2 (c+d)^{3/2}}+\frac {d \cos (e+f x)}{f \left (c^2-d^2\right ) \sqrt {a \sin (e+f x)+a} (c+d \sin (e+f x))} \]

[In]

Int[1/(Sqrt[a + a*Sin[e + f*x]]*(c + d*Sin[e + f*x])^2),x]

[Out]

-((Sqrt[2]*ArcTanh[(Sqrt[a]*Cos[e + f*x])/(Sqrt[2]*Sqrt[a + a*Sin[e + f*x]])])/(Sqrt[a]*(c - d)^2*f)) + (Sqrt[
d]*(3*c + d)*ArcTanh[(Sqrt[a]*Sqrt[d]*Cos[e + f*x])/(Sqrt[c + d]*Sqrt[a + a*Sin[e + f*x]])])/(Sqrt[a]*(c - d)^
2*(c + d)^(3/2)*f) + (d*Cos[e + f*x])/((c^2 - d^2)*f*Sqrt[a + a*Sin[e + f*x]]*(c + d*Sin[e + f*x]))

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 2728

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, b*(C
os[c + d*x]/Sqrt[a + b*Sin[c + d*x]])], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2852

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[-2*(
b/f), Subst[Int[1/(b*c + a*d - d*x^2), x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2858

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp
[(-d)*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(f*(n + 1)*(c^2 - d^2)*Sqrt[a + b*Sin[e + f*x]])), x] - Dist[
1/(2*b*(n + 1)*(c^2 - d^2)), Int[(c + d*Sin[e + f*x])^(n + 1)*(Simp[a*d - 2*b*c*(n + 1) + b*d*(2*n + 3)*Sin[e
+ f*x], x]/Sqrt[a + b*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 -
 b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, -1] && IntegerQ[2*n]

Rule 3064

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])), x_Symbol] :> Dist[(A*b - a*B)/(b*c - a*d), Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[(
B*c - A*d)/(b*c - a*d), Int[Sqrt[a + b*Sin[e + f*x]]/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f,
A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {d \cos (e+f x)}{\left (c^2-d^2\right ) f \sqrt {a+a \sin (e+f x)} (c+d \sin (e+f x))}+\frac {\int \frac {a (2 c+d)-a d \sin (e+f x)}{\sqrt {a+a \sin (e+f x)} (c+d \sin (e+f x))} \, dx}{2 a \left (c^2-d^2\right )} \\ & = \frac {d \cos (e+f x)}{\left (c^2-d^2\right ) f \sqrt {a+a \sin (e+f x)} (c+d \sin (e+f x))}+\frac {\int \frac {1}{\sqrt {a+a \sin (e+f x)}} \, dx}{(c-d)^2}-\frac {(d (3 c+d)) \int \frac {\sqrt {a+a \sin (e+f x)}}{c+d \sin (e+f x)} \, dx}{2 a (c-d)^2 (c+d)} \\ & = \frac {d \cos (e+f x)}{\left (c^2-d^2\right ) f \sqrt {a+a \sin (e+f x)} (c+d \sin (e+f x))}-\frac {2 \text {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,\frac {a \cos (e+f x)}{\sqrt {a+a \sin (e+f x)}}\right )}{(c-d)^2 f}+\frac {(d (3 c+d)) \text {Subst}\left (\int \frac {1}{a c+a d-d x^2} \, dx,x,\frac {a \cos (e+f x)}{\sqrt {a+a \sin (e+f x)}}\right )}{(c-d)^2 (c+d) f} \\ & = -\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {2} \sqrt {a+a \sin (e+f x)}}\right )}{\sqrt {a} (c-d)^2 f}+\frac {\sqrt {d} (3 c+d) \text {arctanh}\left (\frac {\sqrt {a} \sqrt {d} \cos (e+f x)}{\sqrt {c+d} \sqrt {a+a \sin (e+f x)}}\right )}{\sqrt {a} (c-d)^2 (c+d)^{3/2} f}+\frac {d \cos (e+f x)}{\left (c^2-d^2\right ) f \sqrt {a+a \sin (e+f x)} (c+d \sin (e+f x))} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 3.59 (sec) , antiderivative size = 649, normalized size of antiderivative = 3.84 \[ \int \frac {1}{\sqrt {3+3 \sin (e+f x)} (c+d \sin (e+f x))^2} \, dx=\frac {\left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right ) \left ((8+8 i) (-1)^{3/4} \text {arctanh}\left (\left (\frac {1}{2}+\frac {i}{2}\right ) (-1)^{3/4} \left (-1+\tan \left (\frac {1}{4} (e+f x)\right )\right )\right )+\frac {\sqrt {d} (3 c+d) \text {RootSum}\left [c+4 d \text {$\#$1}+2 c \text {$\#$1}^2-4 d \text {$\#$1}^3+c \text {$\#$1}^4\&,\frac {-d \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right )+\sqrt {d} \sqrt {c+d} \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right )-c \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right ) \text {$\#$1}+2 \sqrt {d} \sqrt {c+d} \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right ) \text {$\#$1}+3 d \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right ) \text {$\#$1}^2-\sqrt {d} \sqrt {c+d} \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right ) \text {$\#$1}^2-c \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right ) \text {$\#$1}^3}{-d-c \text {$\#$1}+3 d \text {$\#$1}^2-c \text {$\#$1}^3}\&\right ]}{(c+d)^{3/2}}-\frac {\sqrt {d} (3 c+d) \text {RootSum}\left [c+4 d \text {$\#$1}+2 c \text {$\#$1}^2-4 d \text {$\#$1}^3+c \text {$\#$1}^4\&,\frac {-d \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right )-\sqrt {d} \sqrt {c+d} \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right )-c \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right ) \text {$\#$1}-2 \sqrt {d} \sqrt {c+d} \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right ) \text {$\#$1}+3 d \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right ) \text {$\#$1}^2+\sqrt {d} \sqrt {c+d} \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right ) \text {$\#$1}^2-c \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right ) \text {$\#$1}^3}{-d-c \text {$\#$1}+3 d \text {$\#$1}^2-c \text {$\#$1}^3}\&\right ]}{(c+d)^{3/2}}-\frac {4 d (-c+d) \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )}{(c+d) (c+d \sin (e+f x))}\right )}{4 \sqrt {3} (c-d)^2 f \sqrt {1+\sin (e+f x)}} \]

[In]

Integrate[1/(Sqrt[3 + 3*Sin[e + f*x]]*(c + d*Sin[e + f*x])^2),x]

[Out]

((Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*((8 + 8*I)*(-1)^(3/4)*ArcTanh[(1/2 + I/2)*(-1)^(3/4)*(-1 + Tan[(e + f*x
)/4])] + (Sqrt[d]*(3*c + d)*RootSum[c + 4*d*#1 + 2*c*#1^2 - 4*d*#1^3 + c*#1^4 & , (-(d*Log[-#1 + Tan[(e + f*x)
/4]]) + Sqrt[d]*Sqrt[c + d]*Log[-#1 + Tan[(e + f*x)/4]] - c*Log[-#1 + Tan[(e + f*x)/4]]*#1 + 2*Sqrt[d]*Sqrt[c
+ d]*Log[-#1 + Tan[(e + f*x)/4]]*#1 + 3*d*Log[-#1 + Tan[(e + f*x)/4]]*#1^2 - Sqrt[d]*Sqrt[c + d]*Log[-#1 + Tan
[(e + f*x)/4]]*#1^2 - c*Log[-#1 + Tan[(e + f*x)/4]]*#1^3)/(-d - c*#1 + 3*d*#1^2 - c*#1^3) & ])/(c + d)^(3/2) -
 (Sqrt[d]*(3*c + d)*RootSum[c + 4*d*#1 + 2*c*#1^2 - 4*d*#1^3 + c*#1^4 & , (-(d*Log[-#1 + Tan[(e + f*x)/4]]) -
Sqrt[d]*Sqrt[c + d]*Log[-#1 + Tan[(e + f*x)/4]] - c*Log[-#1 + Tan[(e + f*x)/4]]*#1 - 2*Sqrt[d]*Sqrt[c + d]*Log
[-#1 + Tan[(e + f*x)/4]]*#1 + 3*d*Log[-#1 + Tan[(e + f*x)/4]]*#1^2 + Sqrt[d]*Sqrt[c + d]*Log[-#1 + Tan[(e + f*
x)/4]]*#1^2 - c*Log[-#1 + Tan[(e + f*x)/4]]*#1^3)/(-d - c*#1 + 3*d*#1^2 - c*#1^3) & ])/(c + d)^(3/2) - (4*d*(-
c + d)*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2]))/((c + d)*(c + d*Sin[e + f*x]))))/(4*Sqrt[3]*(c - d)^2*f*Sqrt[1 +
 Sin[e + f*x]])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(448\) vs. \(2(150)=300\).

Time = 0.98 (sec) , antiderivative size = 449, normalized size of antiderivative = 2.66

method result size
default \(\frac {\left (\sin \left (f x +e \right )+1\right ) \sqrt {-a \left (\sin \left (f x +e \right )-1\right )}\, \left (\sin \left (f x +e \right ) d \left (3 \,\operatorname {arctanh}\left (\frac {\sqrt {a -a \sin \left (f x +e \right )}\, d}{\sqrt {a c d +a \,d^{2}}}\right ) a^{\frac {7}{2}} c d +\operatorname {arctanh}\left (\frac {\sqrt {a -a \sin \left (f x +e \right )}\, d}{\sqrt {a c d +a \,d^{2}}}\right ) a^{\frac {7}{2}} d^{2}-\operatorname {arctanh}\left (\frac {\sqrt {a -a \sin \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {a}}\right ) \sqrt {2}\, \sqrt {a \left (c +d \right ) d}\, a^{3} c -\operatorname {arctanh}\left (\frac {\sqrt {a -a \sin \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {a}}\right ) \sqrt {2}\, \sqrt {a \left (c +d \right ) d}\, a^{3} d \right )+3 a^{\frac {7}{2}} \operatorname {arctanh}\left (\frac {\sqrt {a -a \sin \left (f x +e \right )}\, d}{\sqrt {a c d +a \,d^{2}}}\right ) c^{2} d +a^{\frac {7}{2}} \operatorname {arctanh}\left (\frac {\sqrt {a -a \sin \left (f x +e \right )}\, d}{\sqrt {a c d +a \,d^{2}}}\right ) c \,d^{2}+a^{\frac {5}{2}} \sqrt {a -a \sin \left (f x +e \right )}\, \sqrt {a \left (c +d \right ) d}\, c d -a^{\frac {5}{2}} \sqrt {a -a \sin \left (f x +e \right )}\, \sqrt {a \left (c +d \right ) d}\, d^{2}-\sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {a -a \sin \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {a}}\right ) \sqrt {a \left (c +d \right ) d}\, a^{3} c^{2}-\sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {a -a \sin \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {a}}\right ) \sqrt {a \left (c +d \right ) d}\, a^{3} c d \right )}{a^{\frac {7}{2}} \left (c -d \right )^{2} \left (c +d \right ) \left (c +d \sin \left (f x +e \right )\right ) \sqrt {a \left (c +d \right ) d}\, \cos \left (f x +e \right ) \sqrt {a +a \sin \left (f x +e \right )}\, f}\) \(449\)

[In]

int(1/(a+a*sin(f*x+e))^(1/2)/(c+d*sin(f*x+e))^2,x,method=_RETURNVERBOSE)

[Out]

(sin(f*x+e)+1)*(-a*(sin(f*x+e)-1))^(1/2)/a^(7/2)*(sin(f*x+e)*d*(3*arctanh((a-a*sin(f*x+e))^(1/2)*d/(a*c*d+a*d^
2)^(1/2))*a^(7/2)*c*d+arctanh((a-a*sin(f*x+e))^(1/2)*d/(a*c*d+a*d^2)^(1/2))*a^(7/2)*d^2-arctanh(1/2*(a-a*sin(f
*x+e))^(1/2)*2^(1/2)/a^(1/2))*2^(1/2)*(a*(c+d)*d)^(1/2)*a^3*c-arctanh(1/2*(a-a*sin(f*x+e))^(1/2)*2^(1/2)/a^(1/
2))*2^(1/2)*(a*(c+d)*d)^(1/2)*a^3*d)+3*a^(7/2)*arctanh((a-a*sin(f*x+e))^(1/2)*d/(a*c*d+a*d^2)^(1/2))*c^2*d+a^(
7/2)*arctanh((a-a*sin(f*x+e))^(1/2)*d/(a*c*d+a*d^2)^(1/2))*c*d^2+a^(5/2)*(a-a*sin(f*x+e))^(1/2)*(a*(c+d)*d)^(1
/2)*c*d-a^(5/2)*(a-a*sin(f*x+e))^(1/2)*(a*(c+d)*d)^(1/2)*d^2-2^(1/2)*arctanh(1/2*(a-a*sin(f*x+e))^(1/2)*2^(1/2
)/a^(1/2))*(a*(c+d)*d)^(1/2)*a^3*c^2-2^(1/2)*arctanh(1/2*(a-a*sin(f*x+e))^(1/2)*2^(1/2)/a^(1/2))*(a*(c+d)*d)^(
1/2)*a^3*c*d)/(c-d)^2/(c+d)/(c+d*sin(f*x+e))/(a*(c+d)*d)^(1/2)/cos(f*x+e)/(a+a*sin(f*x+e))^(1/2)/f

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 604 vs. \(2 (150) = 300\).

Time = 0.50 (sec) , antiderivative size = 1494, normalized size of antiderivative = 8.84 \[ \int \frac {1}{\sqrt {3+3 \sin (e+f x)} (c+d \sin (e+f x))^2} \, dx=\text {Too large to display} \]

[In]

integrate(1/(a+a*sin(f*x+e))^(1/2)/(c+d*sin(f*x+e))^2,x, algorithm="fricas")

[Out]

[-1/4*((3*a*c^2 + 4*a*c*d + a*d^2 - (3*a*c*d + a*d^2)*cos(f*x + e)^2 + (3*a*c^2 + a*c*d)*cos(f*x + e) + (3*a*c
^2 + 4*a*c*d + a*d^2 + (3*a*c*d + a*d^2)*cos(f*x + e))*sin(f*x + e))*sqrt(d/(a*c + a*d))*log((d^2*cos(f*x + e)
^3 - (6*c*d + 7*d^2)*cos(f*x + e)^2 - c^2 - 2*c*d - d^2 + 4*((c*d + d^2)*cos(f*x + e)^2 - c^2 - 4*c*d - 3*d^2
- (c^2 + 3*c*d + 2*d^2)*cos(f*x + e) + (c^2 + 4*c*d + 3*d^2 + (c*d + d^2)*cos(f*x + e))*sin(f*x + e))*sqrt(a*s
in(f*x + e) + a)*sqrt(d/(a*c + a*d)) - (c^2 + 8*c*d + 9*d^2)*cos(f*x + e) + (d^2*cos(f*x + e)^2 - c^2 - 2*c*d
- d^2 + 2*(3*c*d + 4*d^2)*cos(f*x + e))*sin(f*x + e))/(d^2*cos(f*x + e)^3 + (2*c*d + d^2)*cos(f*x + e)^2 - c^2
 - 2*c*d - d^2 - (c^2 + d^2)*cos(f*x + e) + (d^2*cos(f*x + e)^2 - 2*c*d*cos(f*x + e) - c^2 - 2*c*d - d^2)*sin(
f*x + e))) + 2*sqrt(2)*(a*c^2 + 2*a*c*d + a*d^2 - (a*c*d + a*d^2)*cos(f*x + e)^2 + (a*c^2 + a*c*d)*cos(f*x + e
) + (a*c^2 + 2*a*c*d + a*d^2 + (a*c*d + a*d^2)*cos(f*x + e))*sin(f*x + e))*log(-(cos(f*x + e)^2 - (cos(f*x + e
) - 2)*sin(f*x + e) - 2*sqrt(2)*sqrt(a*sin(f*x + e) + a)*(cos(f*x + e) - sin(f*x + e) + 1)/sqrt(a) + 3*cos(f*x
 + e) + 2)/(cos(f*x + e)^2 - (cos(f*x + e) + 2)*sin(f*x + e) - cos(f*x + e) - 2))/sqrt(a) + 4*(c*d - d^2 + (c*
d - d^2)*cos(f*x + e) - (c*d - d^2)*sin(f*x + e))*sqrt(a*sin(f*x + e) + a))/((a*c^3*d - a*c^2*d^2 - a*c*d^3 +
a*d^4)*f*cos(f*x + e)^2 - (a*c^4 - a*c^3*d - a*c^2*d^2 + a*c*d^3)*f*cos(f*x + e) - (a*c^4 - 2*a*c^2*d^2 + a*d^
4)*f - ((a*c^3*d - a*c^2*d^2 - a*c*d^3 + a*d^4)*f*cos(f*x + e) + (a*c^4 - 2*a*c^2*d^2 + a*d^4)*f)*sin(f*x + e)
), -1/2*((3*a*c^2 + 4*a*c*d + a*d^2 - (3*a*c*d + a*d^2)*cos(f*x + e)^2 + (3*a*c^2 + a*c*d)*cos(f*x + e) + (3*a
*c^2 + 4*a*c*d + a*d^2 + (3*a*c*d + a*d^2)*cos(f*x + e))*sin(f*x + e))*sqrt(-d/(a*c + a*d))*arctan(1/2*sqrt(a*
sin(f*x + e) + a)*(d*sin(f*x + e) - c - 2*d)*sqrt(-d/(a*c + a*d))/(d*cos(f*x + e))) + sqrt(2)*(a*c^2 + 2*a*c*d
 + a*d^2 - (a*c*d + a*d^2)*cos(f*x + e)^2 + (a*c^2 + a*c*d)*cos(f*x + e) + (a*c^2 + 2*a*c*d + a*d^2 + (a*c*d +
 a*d^2)*cos(f*x + e))*sin(f*x + e))*log(-(cos(f*x + e)^2 - (cos(f*x + e) - 2)*sin(f*x + e) - 2*sqrt(2)*sqrt(a*
sin(f*x + e) + a)*(cos(f*x + e) - sin(f*x + e) + 1)/sqrt(a) + 3*cos(f*x + e) + 2)/(cos(f*x + e)^2 - (cos(f*x +
 e) + 2)*sin(f*x + e) - cos(f*x + e) - 2))/sqrt(a) + 2*(c*d - d^2 + (c*d - d^2)*cos(f*x + e) - (c*d - d^2)*sin
(f*x + e))*sqrt(a*sin(f*x + e) + a))/((a*c^3*d - a*c^2*d^2 - a*c*d^3 + a*d^4)*f*cos(f*x + e)^2 - (a*c^4 - a*c^
3*d - a*c^2*d^2 + a*c*d^3)*f*cos(f*x + e) - (a*c^4 - 2*a*c^2*d^2 + a*d^4)*f - ((a*c^3*d - a*c^2*d^2 - a*c*d^3
+ a*d^4)*f*cos(f*x + e) + (a*c^4 - 2*a*c^2*d^2 + a*d^4)*f)*sin(f*x + e))]

Sympy [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {3+3 \sin (e+f x)} (c+d \sin (e+f x))^2} \, dx=\text {Timed out} \]

[In]

integrate(1/(a+a*sin(f*x+e))**(1/2)/(c+d*sin(f*x+e))**2,x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {1}{\sqrt {3+3 \sin (e+f x)} (c+d \sin (e+f x))^2} \, dx=\int { \frac {1}{\sqrt {a \sin \left (f x + e\right ) + a} {\left (d \sin \left (f x + e\right ) + c\right )}^{2}} \,d x } \]

[In]

integrate(1/(a+a*sin(f*x+e))^(1/2)/(c+d*sin(f*x+e))^2,x, algorithm="maxima")

[Out]

integrate(1/(sqrt(a*sin(f*x + e) + a)*(d*sin(f*x + e) + c)^2), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 363 vs. \(2 (150) = 300\).

Time = 0.52 (sec) , antiderivative size = 363, normalized size of antiderivative = 2.15 \[ \int \frac {1}{\sqrt {3+3 \sin (e+f x)} (c+d \sin (e+f x))^2} \, dx=\frac {\sqrt {2} {\left (\frac {\sqrt {2} {\left (3 \, c d + d^{2}\right )} \arctan \left (\frac {\sqrt {2} d \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )}{\sqrt {-c d - d^{2}}}\right )}{{\left (c^{3} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) - c^{2} d \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) - c d^{2} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) + d^{3} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )\right )} \sqrt {-c d - d^{2}}} + \frac {\log \left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}{c^{2} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) - 2 \, c d \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) + d^{2} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )} - \frac {\log \left (-\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}{c^{2} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) - 2 \, c d \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) + d^{2} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )} + \frac {2 \, d \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )}{{\left (c^{2} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) - d^{2} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )\right )} {\left (2 \, d \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - c - d\right )}}\right )}}{2 \, \sqrt {a} f} \]

[In]

integrate(1/(a+a*sin(f*x+e))^(1/2)/(c+d*sin(f*x+e))^2,x, algorithm="giac")

[Out]

1/2*sqrt(2)*(sqrt(2)*(3*c*d + d^2)*arctan(sqrt(2)*d*sin(-1/4*pi + 1/2*f*x + 1/2*e)/sqrt(-c*d - d^2))/((c^3*sgn
(cos(-1/4*pi + 1/2*f*x + 1/2*e)) - c^2*d*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e)) - c*d^2*sgn(cos(-1/4*pi + 1/2*f*x
 + 1/2*e)) + d^3*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e)))*sqrt(-c*d - d^2)) + log(sin(-1/4*pi + 1/2*f*x + 1/2*e) +
 1)/(c^2*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e)) - 2*c*d*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e)) + d^2*sgn(cos(-1/4*pi
 + 1/2*f*x + 1/2*e))) - log(-sin(-1/4*pi + 1/2*f*x + 1/2*e) + 1)/(c^2*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e)) - 2*
c*d*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e)) + d^2*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))) + 2*d*sin(-1/4*pi + 1/2*f*x
 + 1/2*e)/((c^2*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e)) - d^2*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e)))*(2*d*sin(-1/4*p
i + 1/2*f*x + 1/2*e)^2 - c - d)))/(sqrt(a)*f)

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {3+3 \sin (e+f x)} (c+d \sin (e+f x))^2} \, dx=\int \frac {1}{\sqrt {a+a\,\sin \left (e+f\,x\right )}\,{\left (c+d\,\sin \left (e+f\,x\right )\right )}^2} \,d x \]

[In]

int(1/((a + a*sin(e + f*x))^(1/2)*(c + d*sin(e + f*x))^2),x)

[Out]

int(1/((a + a*sin(e + f*x))^(1/2)*(c + d*sin(e + f*x))^2), x)